

Clonal hematopoiesis of indeterminate potential and the risk of atrial fibrillation: prevalence and an association with progression

Hyo-Jeong Ahn, MD^a^{*}, Hong Yul An, MD^{b^{*}}, Jiwoo Lim, MS^b, Song Han, PhD^b, Su-Yeon Choi, MD, PhD^{c,d}, Heesun Lee, MD, PhD^d, Soonil Kwon, MD^a, So-Ryoung Lee, MD, PhD^a, Gregory Y. H. Lip, MD^{e,f}, Seil Oh, MD, PhD^{a,c}, Siddhartha Jaiswal, PhD^g, Youngil Koh, MD, PhD^{a,b,h,i} Eue-Keun Choi, MD, PhD^{a,c}

- ^a Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- ^b Genome Opinion Incorporation, 04799, Seoul, Republic of Korea
- ^c Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- ^d Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.
- e Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Chest & Heart Hospital, Liverpool, United Kingdom

KHRS 2023

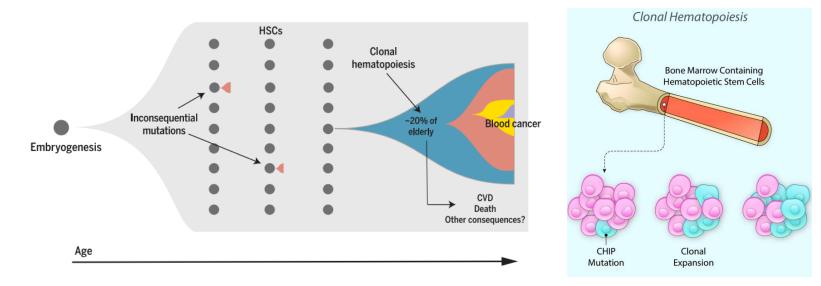
- ^f Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- ^g Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- ^h Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- ⁱ Cancer Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.

Korean Heart Rhythm Society COI Disclosure

This study was partially supported by Genome Opinion Inc.

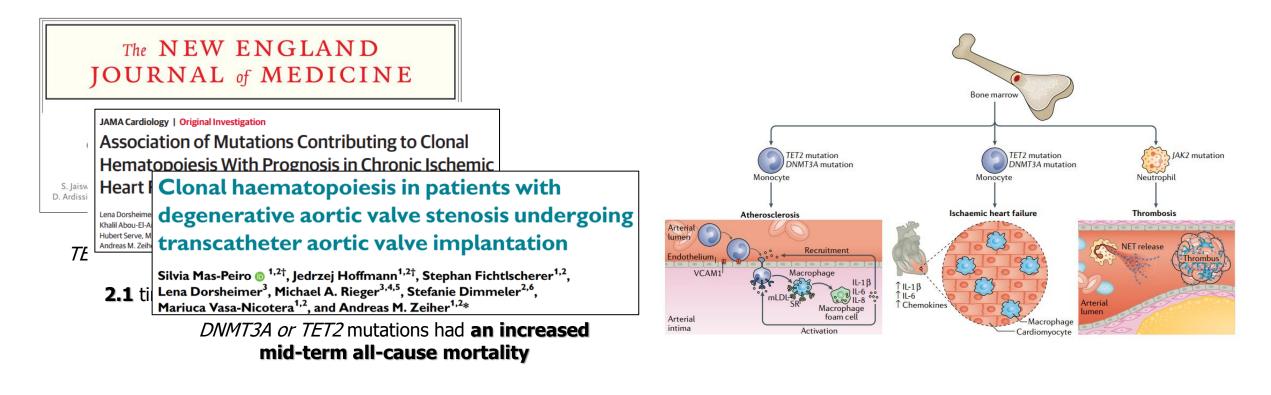
- Background
- Clinical research
- (Basic research)
- Expected clinical implications and future research
- Conclusion

Background


- Clinical research
- (Basic research)
- Expected clinical implications and future research
- Conclusion

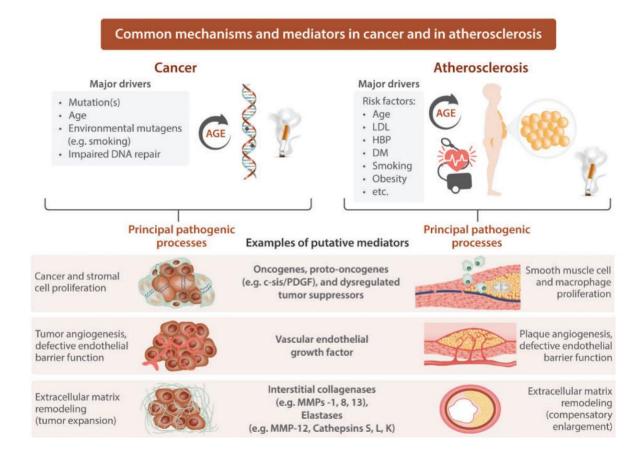
Clonal Hematopoiesis: selective growth advantage of a HSC

- Clonal hematopoiesis of indeterminate potential (CHIP) is the clonal expansion of hematopoietic stem cells bearing acquired somatic mutations, especially DNMT3A, TET2, and ASXL1 * Involved in epigenetic regulation
- Most individuals with CHIP will never develop a hematologic malignant condition, hence the term indeterminate potential * Medical uncertainty



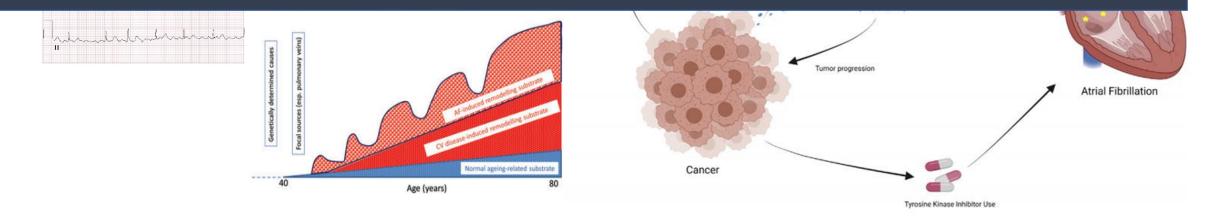
Jaiswal S et al. Science. 2019; Jaiswal S, et al. Nat Rev Cardiol. 2020; Sidlow R, et al. JAMA Cardiol. 2020 KHRS 20

Clonal Hematopoiesis, a newly recognized CV risk factor


- Age-related condition: rare in the young, but 10-20% of those > 70 years
- CHIP associates with a striking **elevation in cardiovascular risk**
- Mouse experiments: causality of CHIP with accelerated atherosclerosis and HF

Inflammation: a common contributor to cancer, aging, and CVD

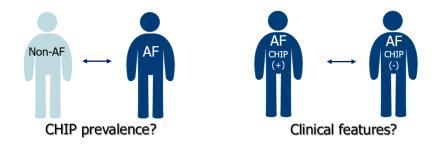
• Key pathogenesis: Inflammatory reactions of PBCs

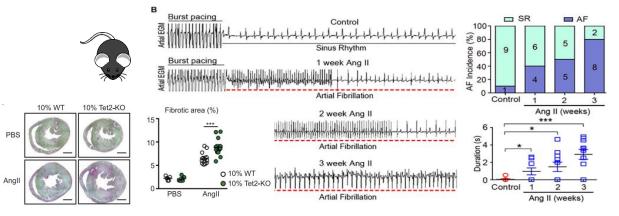

CHIP and atrial fibrillation (AF)?

- AF is a disease of aging
- Inflammation as a pathophysiology
- Shares common risk factors with atherosclerotic CVDs

Atherosclerosis

1st Hypothesis Both CHIP and AF – age related condition, inflammation, CVDs Will there be **any relationship** <u>between CHIP</u> and <u>AF</u>?


Chemotherapy



Aim of the study

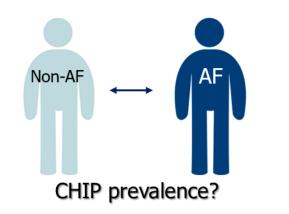
- To evaluate the association between CHIP and AF from bench to bedside
- Part I. Clinical association between CHIP and AF
 - To compare the prevalence of CHIP mutations in Non-AF vs. AF
 - To find clinical features stratified by the CHIP mutations within AF patients
- Part II. Mechanism of CHIP on AF
 - Validation of pathophysiology in mice model
 - Role of CHIP in angiotensin II-induced atrial fibrosis in mice

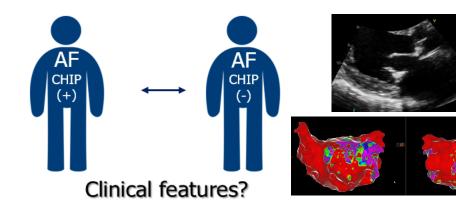
Leiva O, et al. JACC CardioOncol. 2021; Li J, et al. Hypertension. 2018; Wu YX, et al. Front Physiol. 2019 KHRS 2023

Contents

- Background
- Clinical research :

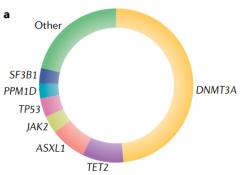
CHIP and AF: the prevalence and associated clinical features


- (Basic research)
- Expected clinical implications and future research
- Conclusion



CHIP and atrial fibrillation (AF)?

- Analysis
 - 1) Non-AF vs. AF: The prevalence of CHIP mutations
 - 2) In AF, CHIP(+) vs. CHIP (-):
 Distinctive AF-related features (AF type, duration, LA remodeling parameters)

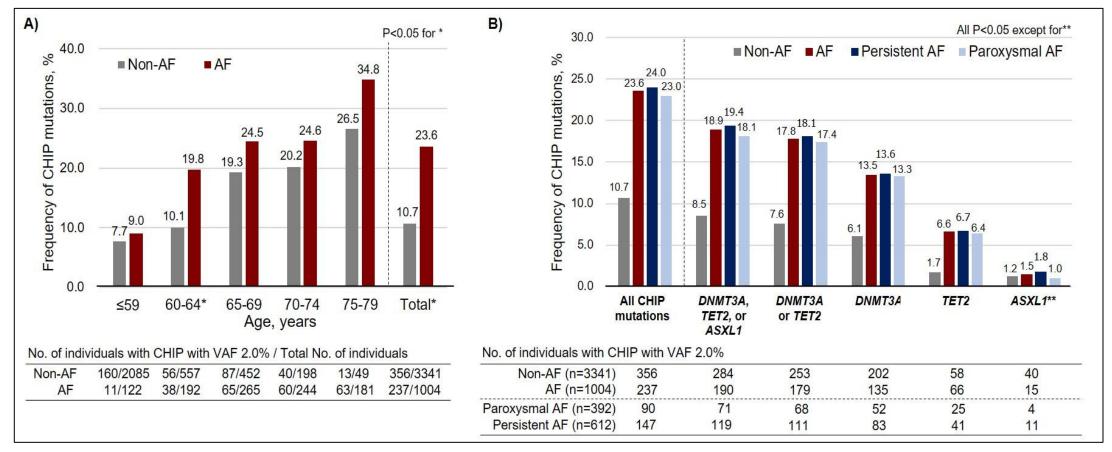


Methods

- Study population
 - *AF* (*n*=1,004)
 - 50-79 years, no hx. of cancer/VHD/cardiac surgery in 2021/4 2022/12
 - Control (n=3,341)
 - Non-AF healthy adults, health examination in 2011/5 2017/1
- A deep targeted sequencing of 24 CHIP driver mutations from peripheral blood-derived mononuclear cells
 - **CHIP (+)** if a variant allele fraction (VAF) reach 2.0%

ASXL1	ATM	BCOR	CBL	CHEK2	CREBBP	DNMT3A	EP300	GNAS	IDH2
JAK2	KMT2D	KRAS	NOTCH1	NOTCH2	PPM1D	SETD2	SF3B1	SRSF2	STAG2
STAT3	TET2	TP53	U2AF1						

* VAF (variant allele fraction): the percentage of reads that support a mutant allele out of the total number of reads.


Results – Baseline characteristics

	Non-AF (GENIE cohort)	AF			AF
	N=3,341	N=1,004	p-value	Ν	N=1,004
Age (years)	58.5 ± 6.5	67.6 ± 6.9	< 0.001	Family history of AF	37 (3.7%)
Sex (Male)	2328 (69.7%)	697 (69.4%)	0.907	EHRA	
Body mass index (kg/m ²)	24.0 ± 2.7	25.3 ± 3.5	< 0.001	0	5 (0.5%)
Comorbidities				1	605 (60.3%)
Hypertension	1320 (39.5%)	756 (75.3%)	< 0.001	2	326 (32.5%)
Diabetes	527 (15.8%)	313 (31.2%)	< 0.001	3	<u>68 (6.8%)</u>
Chronic kidney disease	82 (2.5%)	51 (5.1%)	< 0.001	AF duration (days)	1563.0 (596.0-2813.0)
Stroke/TIA/TE	14 (0.4%)	119 (11.9%)	< 0.001	CHA2DS2-VASc Score	2.6 ± 1.3
Vascular disease	112 (3.4%)	119 (11.9%)	< 0.001	Alcohol	376 (37.5%)
Smoking				Echocardiography	·
Never	1831 (54.8%)	606 (60.4%)		LVEF (%)	59.2 ± 5.7
Ex	1068 (32%)	305 (30.4%)	< 0.001	LA diameter (mm)	45.9 ± 7.2
Current	442 (13.2%)	93 (9.3%)		LAVI (mL/m ²)	47.8 ± 19.2
Measurements				E/E'	10.2 ± 6.6
Systolic blood pressure (mmHg)	119.0 ± 13.4	127.2 ± 14.9	< 0.001	CIED	69 (6.9%)
Diastole blood pressure (mmHg)	78.5 ± 9.8	74.6 ± 10.3	< 0.001	Treatment	
Heart rate (/min)	65.8 ± 9.9	75.0 ± 14.8	< 0.001	Electrical cardioversion	281 (28.0%)
Hb (g/dL)	14.6 ± 1.3	14.1 ± 1.5	< 0.001	Catheter ablation	
Het (%)	44.0 ± 3.7	42.8 ± 4.0	< 0.001	No	605 (60.3%)
Blood urea nitrogen (mg/dL)	15.0 ± 3.7	16.7 ± 4.8	< 0.001	Radiofrequency	232 (23.1%)
Creatinine (mg/dL)	0.9 ± 0.2	0.9 ± 0.2	< 0.001	Сгуо	135 (13.4%)
eGFR (mL/min/1.73m ²)	87.0 ± 14.8	78.6 ± 15.8	< 0.001	Both	32 (3.2%)

Result – Non-AF vs. AF CHIP, More frequent in patients with AF

All CHIP mutations are **more frequently observed in AF** patients across the age **DNMT3A, TET2,** and **ASXL1** are the most common CHIP mutations in AF

Result – Non-AF vs. AF CHIP, *1.4* - fold more frequent in patients with AF

	Prevalence of CHIP mutations (VAF ≥ 2.0%)		OR (95% CI) of CHIP in AF						OR (95% CI) of Model 3	
	Non-AF (n=3,341)	AF (n=1,004)	Model 1	Р	Model 2	Р	Model 3	Ρ]	
All CHIP mutations	356 (10.7%)	237 (23.6%)	1.46 (1.18-1.81)	0.001	1.44 (1.15-1.80)	0.001	1.38 (1.10-1.74)	0.006		
DNMT3A, TET2, or ASXL1	284 (8.5%)	190 (18.9%)	1.41 (1.12-1.79)	0.004	1.38 (1.09-1.76)	0.009	1.32 (1.03-1.69)	0.030		}- ∎i
DNMT3A or TET2	253 (7.6%)	179 (17.8%)	1.53 (1.20-1.95)	0.001	1.50 (1.17-1.93)	0.001	1.42 (1.10-1.84)	0.008		⊢∎ →1
DNMT3A	202 (6.1%)	135 (13.5%)	1.54 (1.18-2.02)	0.002	1.53 (1.16-2.02)	0.003	1.45 (1.09-1.93)	0.012		⊢∎ 1
TET2	58 (1.7%)	66 (6.6%)	1.79 (1.18-2.73)	0.007	1.72 (1.11-2.66)	0.015	1.65 (1.05-2.60)	0.030		}
									ó	1 2

Model 1: adjusted by age, sex; Model 2: adjusted by age, sex, smoking, body mass index; Model 3: adjusted by age, sex, smoking, body mass index, diabetes, hypertension

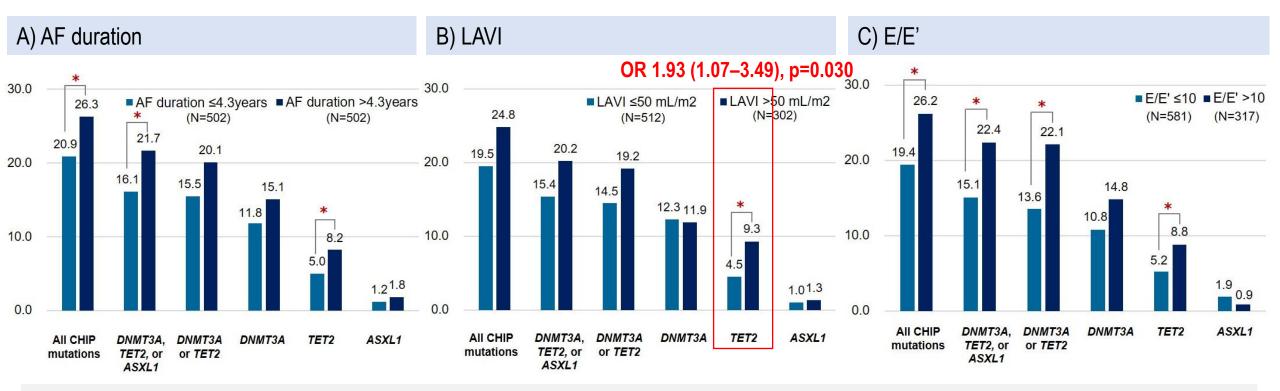
CHIP mutations are **1.4**-fold more prevalent in AF patients than in non-AF As a single gene, **TET2** has the highest OR (**1.7**)

Result – In AF, CHIP (+) vs. CHIP (-):

Then, what would be the distinctive features stratified by CHIP presence?

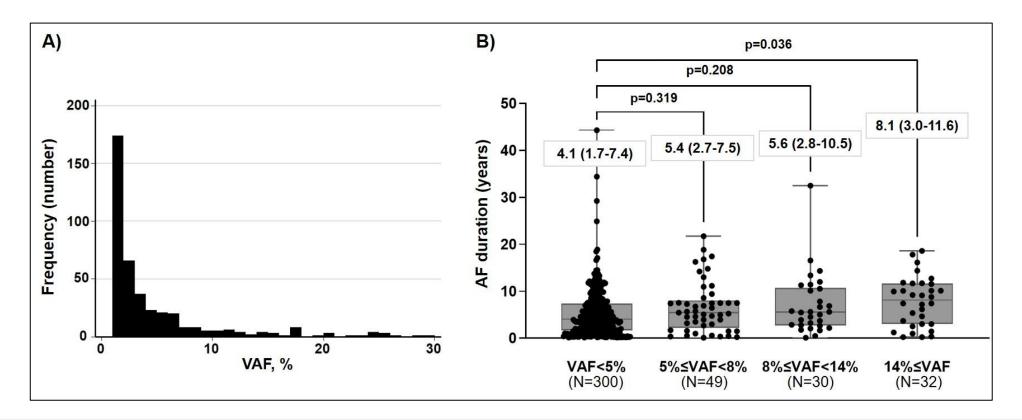
	No DTA (VAF 2%)	DTA (VAF 2%)	p-val			
	N=814	N=190 P-1		ue		
Age	67.2 ± 7.0	69.7 ± 6.0	<0.0	01		
Sex (Male)	565 (69.4%)	132 (69.5%)	0.98	6		
Body mass index (kg/m ²)	25.4 ± 3.7			No DTA (VAF 2%)	DTA (VAF 2%)	n value
Type of AF				N=814	N=190	p-value
Paroxysmal	321 (39.4%) Si	moking				0.764
Persistent	493 (60.6%)	Never		487 (59.8%)	119 (62.6%)	
Family history of AF	32 (3.9%)	Ex		250 (30.7%)	55 (28.9%)	
EHRA		Current		77 (9.5%)	16 (8.4%)	
0	4 (0.5%) A	lcohol		309 (38.0%)	67 (35.3%)	0.489
1	479 (58.8%) E	chocardiography				
2	270 (33.2%)	LVEF		59.1 ± 5.8	59.6 ± 5.0	0.308
3	61 (7.5%)	LA diameter		45.8 ± 7.2	46.5 ± 7.2	0.308
AF duration (days)	1465.0 (583.0-2720.0	LAVI (mL/m ²)		47.6 ± 19.4	48.7 ± 18.3	0.549
Comorbidities		E/E'		9.9 ± 4.0	11.8 ± 13.1	0.002
Hypertension	606 (74.4%) C	IED		52 (6.4%)	17 (8.9%)	0.209
Diabetes	236 (29.0%) Ti	reatment				
Congestive heart failure	142 (17.4%)	Electrical cardioversion		229 (28.1%)	52 (27.4%)	0.833
Chronic kidney disease	37 (4.5%)	Catheter ablation				0.018
Chronic liver disease	5 (0.6%)	No		476 (58.5%)	129 (67.9%)	
Stroke/TIA/TE	95 (11.7%)	Radiofrequency		202 (24.8%)	30 (15.8%)	
Vascular disease	99 (12.2%)	Сгуо		113 (13.9%)	22 (11.6%)	
CHA ₂ DS ₂ -VASc Score	2.5 ± 1.3	Both		23 (2.8%)	9 (4.7%)	

Result – In AF, CHIP (+) vs. CHIP (-): CHIP (*DNMT3A, TET2, ASXL1*) & clinical features in AF


	Prevale	ence of CHIP n	nutations (VAF		PAF	
	Non-AF (n=3,341)	PAF (n=392)	PeAF (n=612)	LsPeAF (n=517)	OR (95% CI) of Model 3	PeAFLsPeAF
All CHIP mutations	356 (10.7%)	90 (23.0%)	147 (24.0%)	129 (25.0%)		1.33 (0.97-1.82) 1.44 (1.11-1.87)* 1.50 (1.14-1.99)*
DNMT3A, TET2, or ASXL1	284 (8.5%)	71 (18.1%)	119 (19.4%)	104 (20.1%)		1.27 (0.90-1.78) 1.38 (1.04-1.83)* 1.44 (1.06-1.94)*
DNMT3A or TET2	253 (7.6%)	68 (17.4%)	111 (18.1%)	97 (18.8%)		1.36 (0.96-1.93) 1.47 (1.09-1.98)* 1.53 (1.12-2.09)*
DNMT3A	202 (6.1%)	52 (13.3%)	83 (13.6%)	73 (14.1%)		1.35 (0.91-1.99) 1.52 (1.09-2.11)* 1.58 (1.11-2.23)*
TET2	58 (1.7%)	25 (6.4%)	41 (6.7%)	37 (7.2%)		1.82 (1.01-3.28)* 1.59 (0.95-2.65) 1.74 (1.02-2.97)*
					0 1 2 3	

Result – In AF, CHIP (+) vs. CHIP (-):

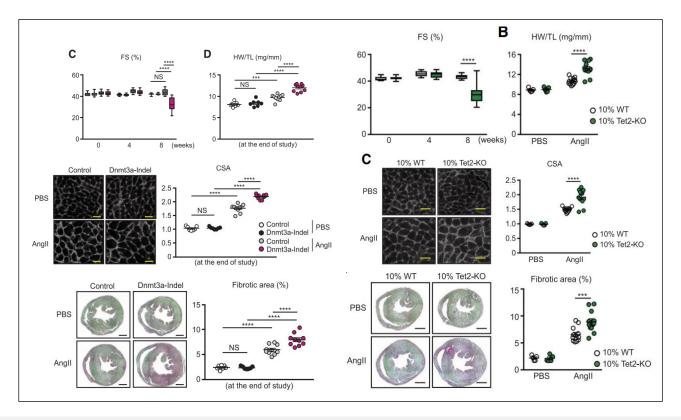
Frequency of CHIP mutations according to AF duration, LA volume index, and E/E


A *higher* prevalence of CHIP in AF with: Longer duration, increased LA volume, and elevated E/E'

KHRS 2

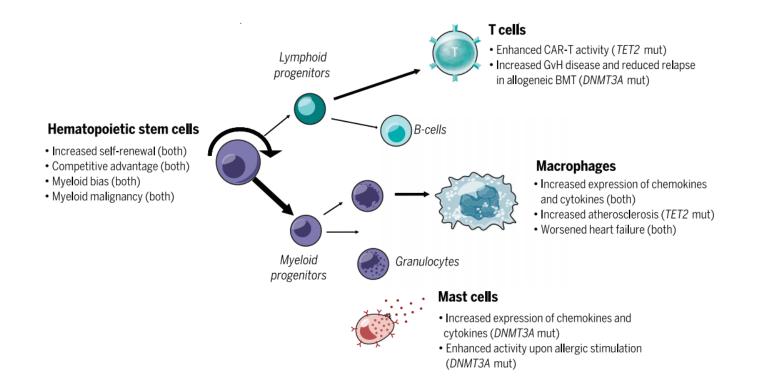
Result – In AF:

Dose-response relationship with CHIP VAF


A *longer duration of AF* according to the *higher VAF* in patients with AF with CHIP of VAF > 0%

What would be the mechanism?

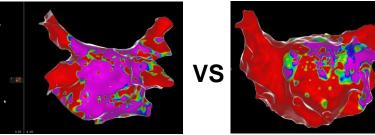
• DNMT3A, TET2: Greater cardiac hypertrophy, decreased cardiac function, higher levels of fibrosis



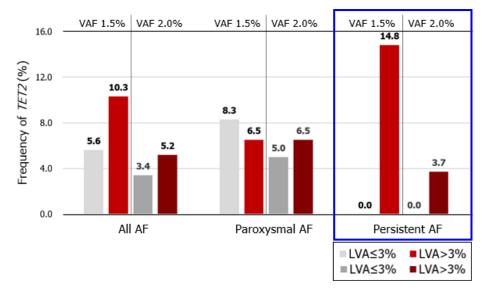
CHIP mutations might contribute to the development/progression of AF *via atrial hypertrophy* and *fibrosis*

What would be the mechanism?

• CHIP mutations: enhanced activity of immune cells with increased secretion of chemokines and cytokines



the higher prevalence of CHIP would be possibly due to *higher inflammatory reactions* in AF patients.



Signal in our data

• Persistent AF, RFCA, LVA : 56 patients

	123 140					
		LVA≤3%	LVA>3%	p-value		
All AF	<i>TET2</i> (VAF 1.5%)	5/89 (5.6%)	6/58 (10.3%)	0.29		
	<i>TET2</i> (VAF 2.0%)	3/89 (3.4%)	3/58 (5.2%)	0.59		
	<i>TET2</i> (VAF 1.5%)	5/60 (8.3%)	2/31 (6.5%)	0.75		
Paroxysmal AF	<i>TET2</i> (VAF 2.0%)	3/60 (5.0%)	2/31 (6.5%)	0.77		
Persistent AF	<i>TET2</i> (VAF 1.5%)	0/29 (0.0%)	4/27 (14.8%)	0.031		
	<i>TET2</i> (VAF 2.0%)	0/29 (0.0%)	1/27 (3.7%)	0.3		

For persistent AF, TET2 mutation was more frequent in patients with LVA>3% than LVA≤3%

- Background
- Clinical research
- (Basic research)
- Expected clinical implications and future research
- Conclusion

Role of clonal hematopoiesis of indeterminate potential in angiotensin II-induced atrial fibrosis in mice

• Hypothesis

CHIP is associated with the development of AF via atrial fibrosis/inflammation
 Inflammasome signaling would play a role in CHIP-AF

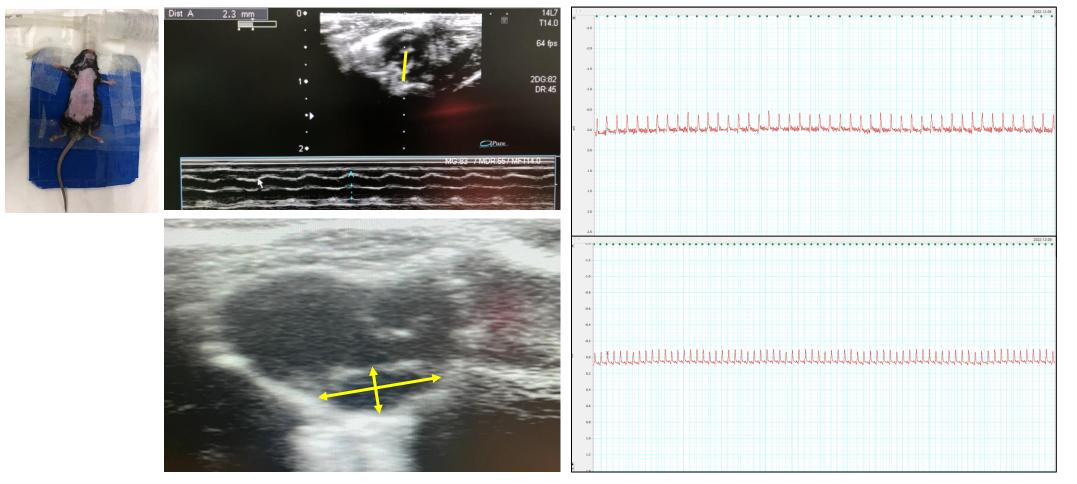
• Aim

In TET2(-) vs (+) mice,

- 1) To compare Ang II-induced atrial fibrosis/inflammtion and AF inducibility
- 2) To evaluate whether inflammasome signaling blocking agent suppress Ang II-induced atrial fibrosis and AF inducibility

Method – Overall scheme

HOSPITAL

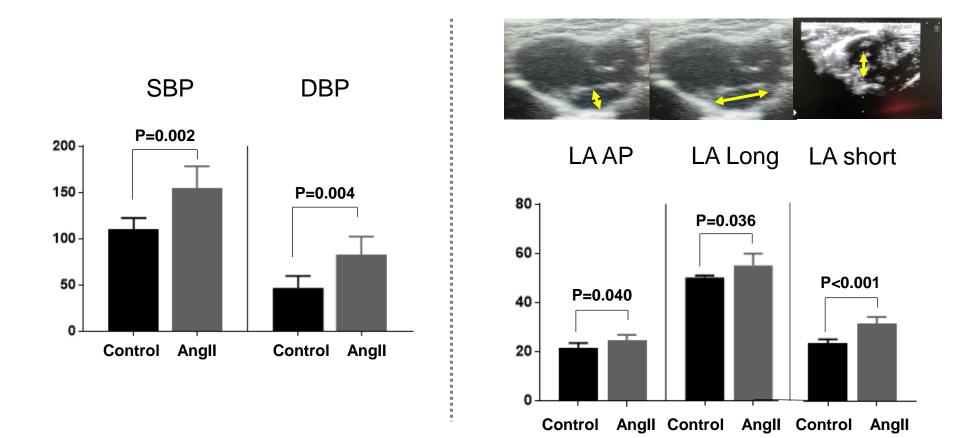


KHRS 2023

+

Pilot experiment – Baseline echocardiography and ECG

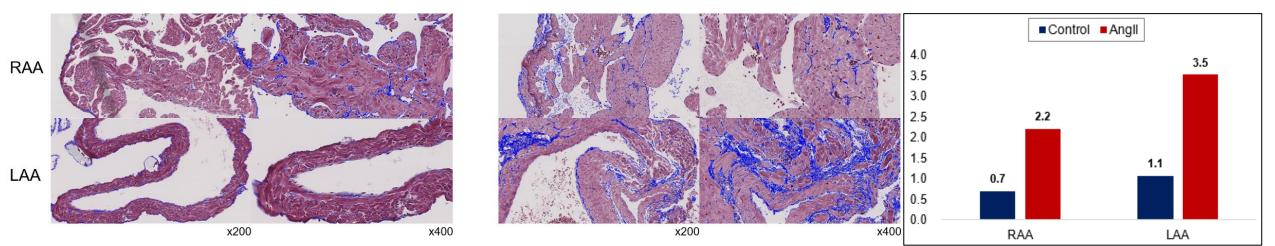
• Control (n=6) / Ang II (n=6, 1000 ng/kg/min)



Pilot experiment, @ SNUH Biomedical Research Institute, In 2022/12-2023/6 KHRS 2023

Pilot experiment – 3wks BP and LA size increment

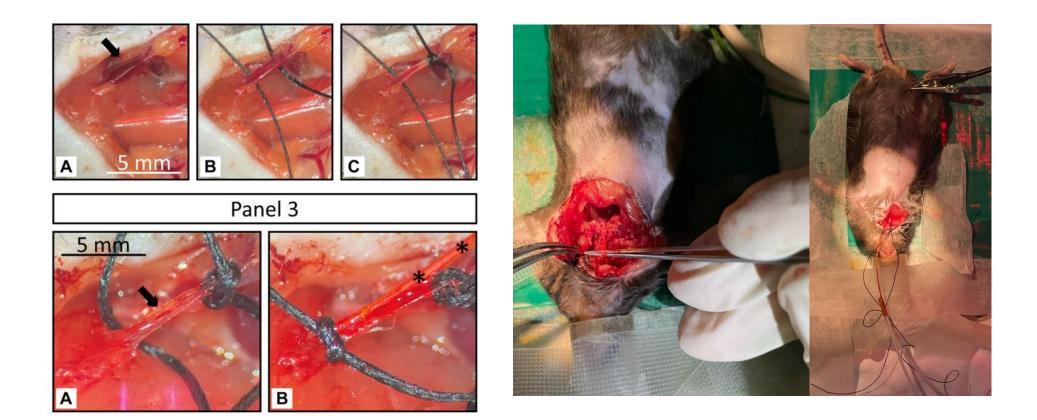
• BP elevation and cardiac hypertrophy after 3wks of Ang II infusion (1000 ng/kg/min)



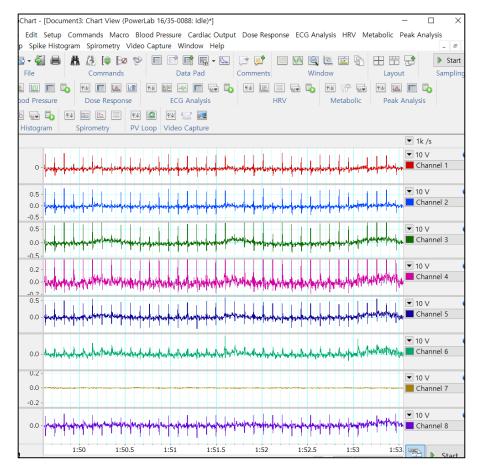
Pilot experiment – Histology of heart after 3wks

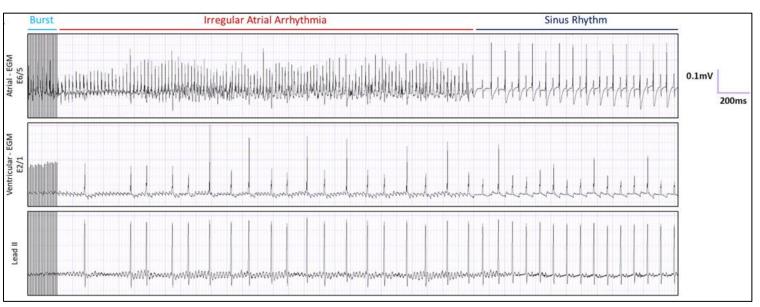
RAA LAA X20 X40

Ang II infusion group


Analysis by ImagePro, ImageJ

Pilot experiment, @ SNUH Biomedical Research Institute, In 2022/12-2023/6 KHRS 2023

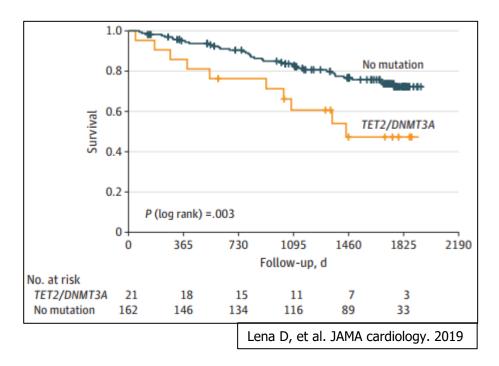

Pilot experiment – AF inducibility



Pilot experiment, @ SNUH Biomedical Research Institute, In 2022/12-2023/6 KHRS 2023

Pilot experiment – AF inducibility

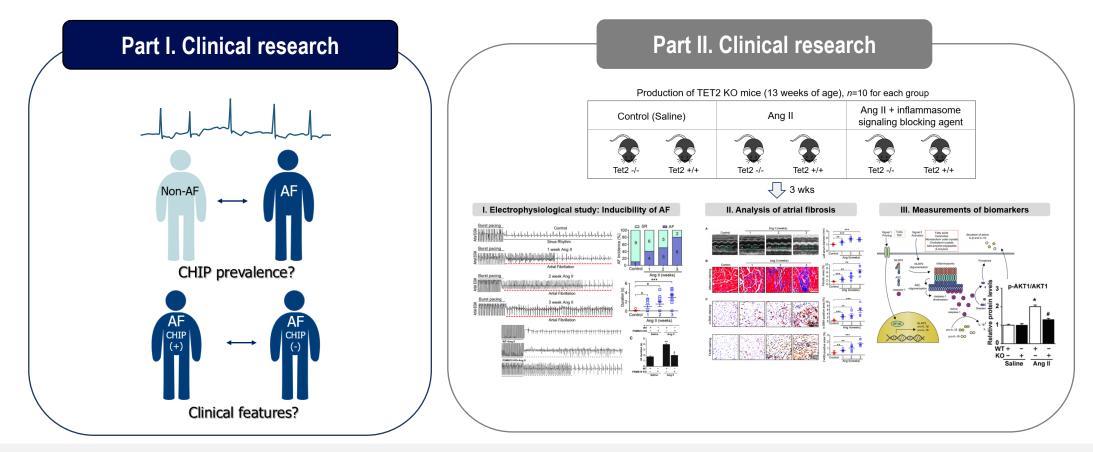
Favere K, et al. Am J Physiol Heart Circ Physiol. 2022 Oct 1;323(4):H763-H773. Pilot experiment, @ SNUH Biomedical Research Institute, In 2022/12-2023/6


- Background
- Clinical research
- (Basic research)
- Expected clinical implications and future research
- Conclusion

Clinical perspective and translational outlook

- Ongoing research:
 - Basic research: validation in mice model
 - Follow-up of 1004 AF cohort: RFCA recurrence + stroke/heart failure hospitalization/death

Such as this graph?

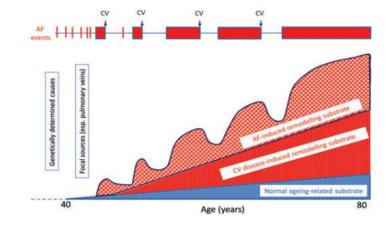

- ✓ AF recurrence/burden after catheter ablation
 ✓ Stroke
- ✓ Heart failure hospitalization
- ✓ Death ...

✓ Stratified by
 Inflammasome blocking agent +/- ?

Clinical perspective and translational outlook

Better understanding of AF: Pathophysiology, Clinical differentiation, Prognosis

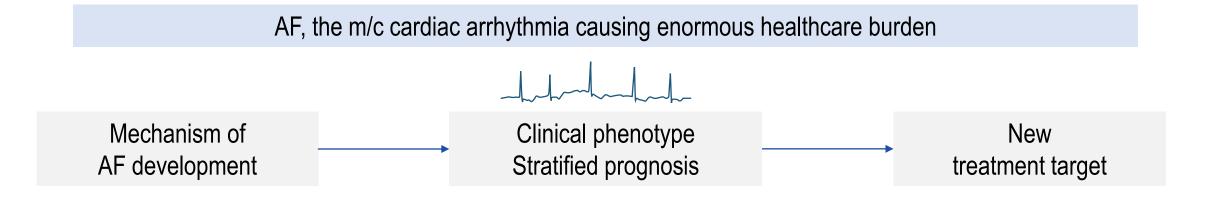
New treatment paradigm of AF



Conclusion

From our clinical research, in AF;

- CHIP mutations are **1.4-fold** more frequent
- The m/c somatic mutations are **DNMT3A**, **TET2** (1.7-fold), and **ASXL1**
- CHIP(+) are older, more likely to have diabetes, and have a longer AF duration and greater E/E' value than CHIP(-)
- Severe LA enlargement: *TET2* mutation x 1.9 ↑
 - \rightarrow CHIP might be associated with *development* and *progression* of AF

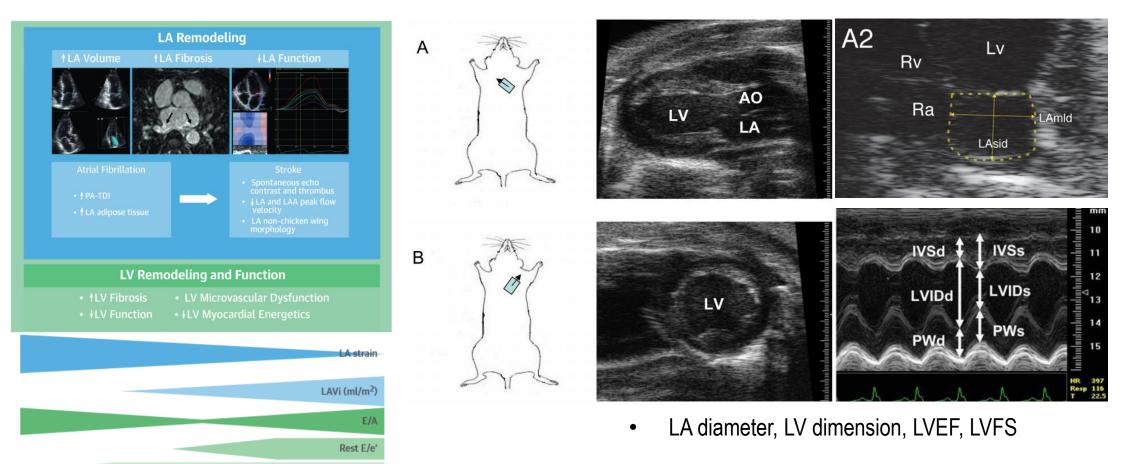


Conclusion

Our future research will...

- Compare angiotensin II–induced LA fibrosis, inflammation, and AF inducibility according to the presence of CHIP in mice
- Provide better understanding of AF from pathophysiology to new treatment strategy

Thank you for your attention



Method – Blood pressure/Transthoracic echocardiography

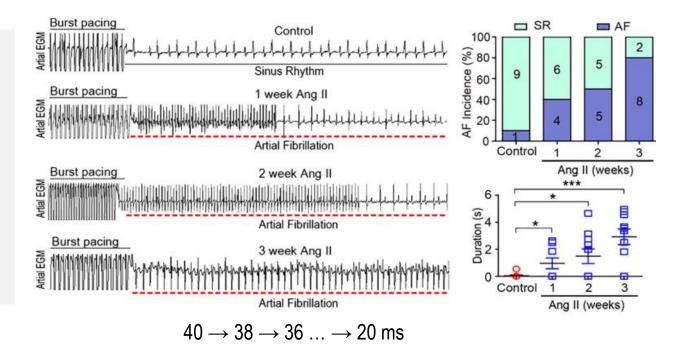
Exercise E/e'

• LA remodeling: AF development

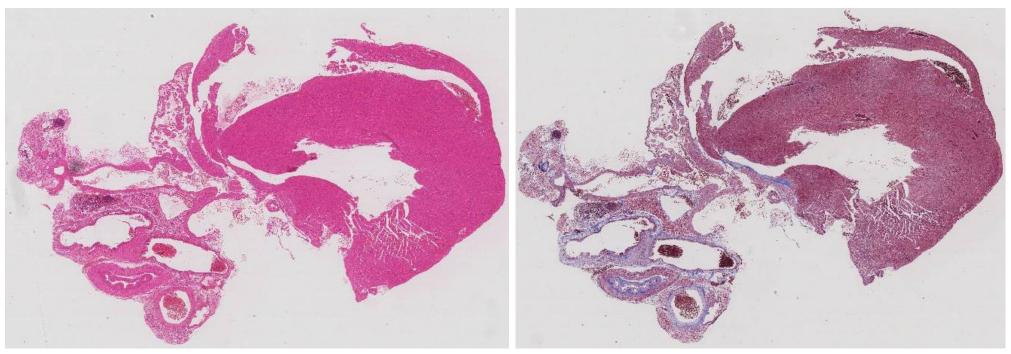
Thomas L, et al. J Am Coll Cardiol. 2019; Delgado V, et al. J Am Coll Cardiol. 2017 Gao S, et al. Curr Protoc Mouse Biol. 2011; Colazzo F, et al. PLoS One. 2015 **KHRS 2023**

Method – Continuous Ang II infusion (induce atrial fibrosis)

- Via osmotic mini-pump
- Ang II (Sigma-Aldrich, St Louis, MO)
 - 1500 ~2000 ng/kg/min, 3 wks


* Optimal Ang II concentration to evaluate the effect of CHIP mutations to be determined.

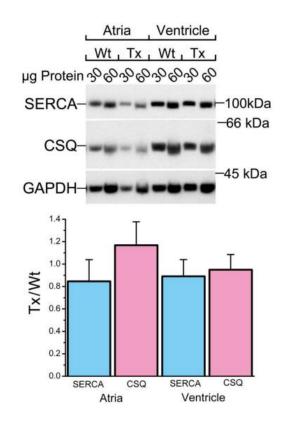
Method – Evaluation of AF inducibility


- Atrial burst pacing by Millar 1.1F octapolar EP catheter via Rt. jugular vein.
- 1-lead body surface ECG, 4 intracardiac bipolar electrograms (GY6328B; HeNan HuaNan Medical Science. & Technology Ltd.)
- 5 second bursts through the catheter electrodes
- Burst pacing started at a 40 ms cycle length, decreasing by 2 ms in each successive burst to a cycle length of 20 ms
- 2) Burst pacing was performed for a total of 3 times in each mouse (with a 5-min break)
- * **AF**: period of rapid irregular atrial rhythm for at least 1 second

Method – Evaluation of atrial fibrosis

- Day 22, after AF induction test
- Whole atrial tissue: 4% paraformaldehyde immersion (24 hours) → embed in paraffin → sliced into 5-mm thick sections → H&E, Masson's trichrome, IHC

H&E


Pilot experiment, @ SNUH Biomedical Research Institute, In 2022/12-2023/1 KHRS 2023

Masson's trichrome

Method – Analysis of immune biomarker

mRNA expression

- Profibrotic signals: Collagen 1, collagen 3, a-SMA
- LA inflammation: IL-1b, IL-6, TNF-a, TGF-a
- Protein analysis
 - From frozen atrial tissue
 - Western blot: TNF-α, IL-6, MCP-1,
 - Collagen 1, Collagen 3, α -SMA, TGF- β , Smad2/3

Method – Summary of parameters

Role of clonal hematopoiesis of indeterminate potential in angiotensin II-induced atrial fibrosis in mice

Physiological profile

- ✓ Body/heart weight
- ✓ Blood pressure
- ✓ Surface ECG
- ✓ Heart function by

transthoracic

echocardiography, etc.

AF inducibility and duration

✓ In vivo electrophysiology by

burst pacing

Inflammation

 ✓ Histology: H&E staining, IHC (against for macrophage)

✓ mRNA (qRT-PCR): IL-1β, IL-6, TNF-α, MCP-1,

✓ Protein (western blot): TNF-α, IL-6, MCP-1,

• Fibrosis

✓ Histology: MT or Picrosirius red staining

- ✓ mRNA (qRT-PCR): Collagen 1, Collagen 3, α SMA, TGF-β
- ✓ Protein (western blot): Collagen 1, Collagen 3,
 α-SMA, TGF-β, Smad2/3

